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Motivation
For the construction 
industry:

How green are green 
buildings? 

Car manufacturers 
required to provide MPG, 
why different for 
buildings?



Motivation
For users/owners of 
buildings:

You can not control what 
you do not measure 

Grocery shopping 
analogy



Vision
Energy-aware Smart 
Facilities

AwareAware: continuous 
monitoring, reporting.
SmartSmart: user feedback with 
actionable information, 
able to predict, linking 
cause and effect: really 
smart.



Problem Definition
Low feedback rate:

Monthly bill
Daily averages

Difficult to obtain better data:
Hardware installation difficulties
Price:

Plug-through meters (~$100/each)
Circuit-level meters (~$3000/panel)

Even if consumers had the data:
Analyzing it is cumbersome 
Recommendations, forecasting should be automatic



Proposed Approach
Non-intrusive load monitoring (NILM):

Obtain inexpensive measurements of total power 
consumption.
Use signal processing and machine learning techniques 
to disaggregate total load into individual appliances.

Leverage existing infrastructure:
Electric circuits as communication medium between 
appliances and system.
Correlate with other sensor data: light intensity sensors, 
temperature, etc.

More intelligent, less expensive solutions.



Previous Work
NILM has been around for 20+ years.
Very promising results in:

Controlled laboratory settings
Shipboard systems
Detecting large, quasi-static loads.
Typical residential buildings of the early 90's (no variable loads).

One commercial product marketed for electric utilities.

Our contributions:
Real world scenarios, in currently occupied buildings.
Interested in the applications of the disaggregated data.
Applying current Machine Learning techniques. 



Our approach to NILM in detail...



The Hardware
Incoming signals:

Aggregate Voltage and
Current.

Data Acquisition card
(DAQ) converts analog to
digital signals.
Computer processes the
raw waveforms and
computes aggregate power
metrics: real power (P), 
reactive power (Q), etc.
Event detection and
classification algorithms 
use this data.



The obtained signals
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Event Detection

Probabilistic approach
Generalized Likelihood Ratio

Currently testing wavelets
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Event Classification: 
Feature Extraction
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Event Classification: 
Feature Extraction

Three methods:
Delta metricsDelta metrics: difference between pre/post 
average
Transient profileTransient profile: all data-points in pre/post 
windows
Ridge Regression coefficientsRidge Regression coefficients:

Polynomial basis: 1st order, no bias-term, proved 
best.
Gaussian Radial Basis Functions: 6 or 7 RBFs were 
enough
Fourier basis: 1 or 2 coef. proved best



Event Classification: 
Training Classifiers

Two different setups:
17 appliances in an occupied residential building  
(Real World)
8 appliances in a laboratory (Noise Free)

Four different classifiers:
Gaussian Naïve Bayes
1-Nearest Neighbor
AdaBoost
Decision Trees



Event Classification: 
Training Classifiers

WireSpy: a tool to 
support the training 
process.

Clamps around the 
appliance’s wire.
Detects changes in the 
overall current draw.
Time-stamps those 
changes and sends this 
info. to the system 
wirelessly.
We obtain accurate 
ground truth.



Event Classification: 
Training Results

k-Nearest Neighbors (kNN)
NF – 90% (RBF Coef.), RW – 81% (RBF Coef.)

Gaussian Naïve Bayes (GNB)
NF – 83% (Delta), RW – 57% (Poly. Coef.)

AdaBoost
NF – 76% (Poly. Coef.), RW – 0.50% (Poly. 
Coef.)

Decision Trees
NF – 85% (Delta), RW – 58% (RBF Coef.)



Event Classification: 
Validation Results

Validation Results 
(Accuracy in %)

GNB kNN, k=1 Ada
Boost DT

Noise Free

Delta 52.94 67.65 51.52 61.76

Whole Transient 38.24 73.53 -- 58.82
Polynomial 
Coefficients 58.82 67.65 51.52 52.94

Fourier Coefficients 64.71 79.41 2.94 64.71

RBF Coefficients 67.65 67.65 ** 64.71

Real World

Delta 47.69 73.81 36.59 42.86

Whole Transient 9.52 73.81 -- 47.62
Polynomial 
Coefficients 61.90 80.95 61.90 57.14

Fourier Coefficients 50.00 80.95 55.00 54.76

RBF Coefficients 47.62 76.19 35.71 54.76



Conclusions
Very simple metrics and algorithms have a decent
performance: slope and 1-NN.
Our algorithms maintain their performance in noisy
environments (real world).
Facilities with this kind of system can obtain a 
detailed report with the operational schedule of all 
appliances.
Future work includes adding other existing sources
of information to correlate with: environmental
sensors, time of day, etc.



Video Demonstration



Questions?

lucio@andrew.cmu.edu
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